10 research outputs found

    Planning of multi-hub energy system by considering competition issue

    Get PDF
    Energy hub concept has been emerged as a suitable tool to analyze multi-carrier energy systems. Deregulation and increasing competition in the energy industry have provided a suitable platform for developing the multi-agent energy systems. Planning of energy hubs considering the competition between the hubs has not been sufficiently addressed, yet. A model has been proposed in this study for planning of a multi-hub energy system considering the competition between the hubs.  The hubs are interconnected via an electric transmission system. A linear model has been developed to determine the optimal planning/operation strategy for energy hubs in a multi-period planning horizon to meet the heat and electricity demand for the defined load zone. The problem has been formulated and solved using Karush–Kuhn–Tucker (KKT) conditions. The proposed model has been applied to 3-Hub and 5-Hub energy systems. The effect of renewable generation and storage system has also been evaluatedIt has also been observed that inclusion of renewable generation or storage technologies can reduce the conventional electricity generation capacity by 63 percent in HUB2

    A Heuristic Ranking Approach on Capacity Benefit Margin Determination Using Pareto-Based Evolutionary Programming Technique

    Get PDF
    This paper introduces a novel multiobjective approach for capacity benefit margin (CBM) assessment taking into account tie-line reliability of interconnected systems. CBM is the imperative information utilized as a reference by the load-serving entities (LSE) to estimate a certain margin of transfer capability so that a reliable access to generation through interconnected system could be attained. A new Pareto-based evolutionary programming (EP) technique is used to perform a simultaneous determination of CBM for all areas of the interconnected system. The selection of CBM at the Pareto optimal front is proposed to be performed by referring to a heuristic ranking index that takes into account system loss of load expectation (LOLE) in various conditions. Eventually, the power transfer based available transfer capability (ATC) is determined by considering the firm and nonfirm transfers of CBM. A comprehensive set of numerical studies are conducted on the modified IEEE-RTS79 and the performance of the proposed method is numerically investigated in detail. The main advantage of the proposed technique is in terms of flexibility offered to an independent system operator in selecting an appropriate solution of CBM simultaneously for all areas

    A Heuristic Ranking Approach on Capacity Benefit Margin Determination Using Pareto-Based Evolutionary Programming Technique

    Get PDF
    This paper introduces a novel multiobjective approach for capacity benefit margin (CBM) assessment taking into account tie-line reliability of interconnected systems. CBM is the imperative information utilized as a reference by the load-serving entities (LSE) to estimate a certain margin of transfer capability so that a reliable access to generation through interconnected system could be attained. A new Pareto-based evolutionary programming (EP) technique is used to perform a simultaneous determination of CBM for all areas of the interconnected system. The selection of CBM at the Pareto optimal front is proposed to be performed by referring to a heuristic ranking index that takes into account system loss of load expectation (LOLE) in various conditions. Eventually, the power transfer based available transfer capability (ATC) is determined by considering the firm and nonfirm transfers of CBM. A comprehensive set of numerical studies are conducted on the modified IEEE-RTS79 and the performance of the proposed method is numerically investigated in detail. The main advantage of the proposed technique is in terms of flexibility offered to an independent system operator in selecting an appropriate solution of CBM simultaneously for all areas

    Allocation of Available Transfer Capability in Planning Horizon

    No full text
    International audienc

    UPFC for Enhancing Power System Reliability

    No full text
    International audienc

    Optimal Allocation of Available Transfer Capability in Operating Horizon

    No full text
    International audienc
    corecore